The Efficiency of Naturally Derived Pigments from Microorganisms, Fungi, and Plants in Dyeing Fabric

Elise Burk Dr. Vicki Stanavitch, Faculty Mentor Turock School of Arts and Sciences Keystone College

Table of Contents

- 1. Introduction
- 2. Background
- 3. Research Questions
- 4. Research Methods
- 5. Results
- 6. Discussion
- 7. Conclusion
- 8. Questions

Picture 1: Monascus red dyed strips

Introduction

01

Natural pigments

- Also known as biopigments, natural colorants or micropigments (fungi, bacteria)

- Reference all pigments created by living organisms
- Used since ancient times but decreased in popularity
- Have started to resurface

Perspective Application

- Create a sustainable alternative
 - Waste
 - -Unrenewable resources
- Limit the impacts of Synthetics
 Pollution
 Other
- Increase cost effectiveness
- Meet social demand

Picture 2: Textiles dye waste water; https://arviatechnology.com/case-studies/case-study-removal-of-chemical-dye -from-textile-wastewater/

Picture 3: Quercus robur dyed strips

02

Background

Literature Review

Dyeing History/ Dyeing Process:

- A Brief History Of Colour, The Environmental Impact Of Synthetic Dyes And Removal By Using Laccases. (Ardila-Leal et al., 2021)

- Global Communities, Biotechnology, and Sustainable Design- Natural/ Bio Dyes in Textiles (Carvalho & Santos, 2015)

Literature Review

Plants:

- Extraction of Natural Dyes for Textile Dyeing from Coloured Plant Wastes Released from the Food and Beverage Industry (Bechtold et al., 2005) -

- Preparation of Biomass Pigments and Dyeing Based on Bioconversion (Gong et al., 2018)

- Textiles Coloured With Natural Dyes Of Vegetal Origin (Dolca, 2018)

Bacteria:

- Microbial Pigment as an Alternative to Synthetic Dye (Jha et al., 2017)

- Microbial Pigments as an Alternative to Synthetic Dyes and Food Additive: a Brief Review of Recent Studies (Aman et al., 2022)

- Bacterial Secondary Metabolites as Biopigments for Textile Dyeing (Kramar & Kostic, 2022)

Fungi:

- Colorfastness of Extracted Wood-staining Fungal Pigments on Fabrics: a New Potential fo Textile Dyes (Hinsch et al., 2015)

- Production of Fungal Pigments: Molecular Processes and Their Applications (Lin & Xu, 2022)

03

Research

Questions

Picture 4: Lawsone dyed wool segments after spectrophotometer test

RQ1

Can microbial and other natural pigments be used to dye textiles based on quantity yield produced, and quality of saturation?

H₀: Microbial, fungal, and natural pigments cannot be used to dye a textile based on yield of pigment, and quality of saturation based on absorbance value and transmittance percentage .

RQ2 What biopigments produce the most yield of pigment during application when dyeing textiles?

H₀: The microbial pigments will not produce a bigger yield of pigment compared to the other natural alternatives by milligrams/milliliter.

RQ3 Which biopigment has the best color output?

H₀: The plant pigments will not produce the best color output compared the other biopigments based of absorbance value and transmittance percentage.

O2 Research Methods

Picture 5: Allium cepa Peel Dye bath

Pigments

Fungi: Xylindein (*Chlorociboria aeruginosa*); Draconin red (*Scytalidium cuboideum*)

Alter. Fungi: p-Benzoquinone; Lawsone

Bacteria: Monascus (*Monascus sanguineus*); Melanin (*Aspergilus carbonarius*)

Alter. Bacteria: Red Yeast Rice; Synthetic Melanin

Plant: Oak Leaves (variation); Onions (Allium cepa)

Control/Comparison: Synthetic Red dye

Dye

Dye Bath/ Incubation: Water & 95% Ethanol, 60 mins, Uptake for 30 secs Drying: 24+ hours

Fabric

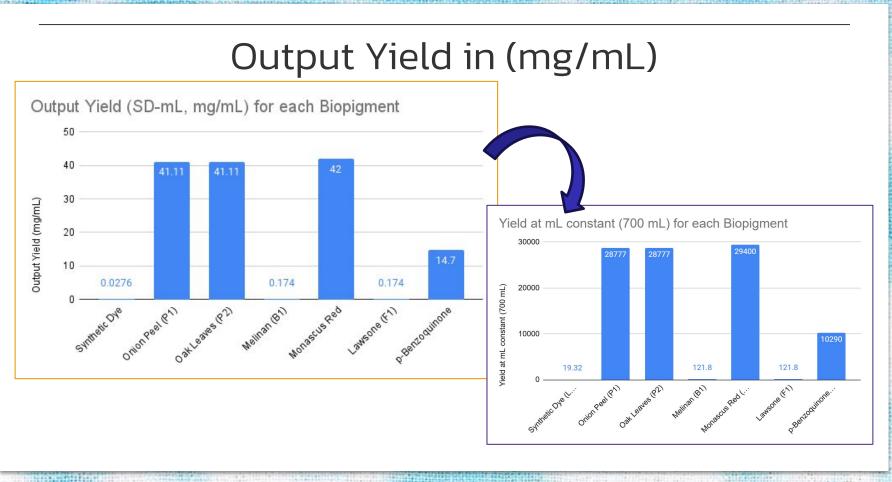
100% Wool strips10 strips per dye50 ¼ inch strips for color analysis

Color tests

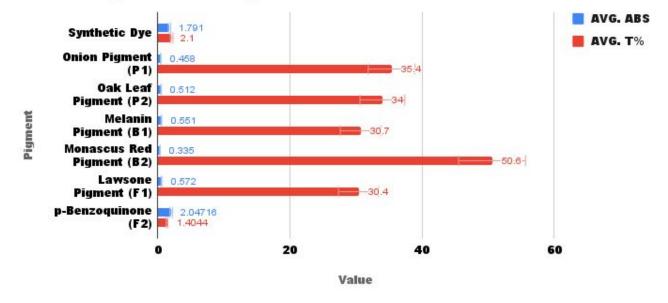
Absorbance Value (ABS) Transmittance Percentage (T%) Optical Observation (Averages compared)

Yield

Based on ratio of weight to volume of solvent (mg/mL) Averages compared


03 Results

Picture 6: (top) Onion Peel dyed wool strips, (Bottom) Synthetic dyed wool strips


Visible Color

	Visible Color on Fabric		
Synthetic Dye (Liquid)	Red		
Onion Peel (P1)	Yellow/Tan		
Oak Leaves (P2)	Brown/Tan		
Melinan (B1)	Black		
Monascus Red (B2)	Light Red		
Lawsone (F1)	Orange/Yellow		
p-Benzoquinone (F2)	Brown/Tan		

Average ABS and T% per Pigment

Average Absorbance Value and Average Transmittance Percentage of Each Pigment

ANOVA Test Results

ANOVA table (Type II)

Hover over the cells for formulas and calculation.

Source	DF	Sum of Square (SS)	Mean Square (MS)	F Statistic (df ₁ ,df ₂)	P-value
Factor A - rows (A)	6	45707.066	7617.844	120.773 (6,686)	< 2.2e-16
Factor B - columns (B)	1	112788.729	112788.729	1788.155 (1,686)	< 2.2e-16
Interaction AB	6	53068.959	8844.827	140.226 (6,686)	< 2.2e-16
Error	686	43269.772	63.075		
Total	699	254834.526	364.57		

Chi–Squared test and paired t–test Results

Chi-Squared Test of Association:

- $x^2 = 58.854$
- P-value= 0.000128

Paired T-test:

- P-value= .0001
- Df = 349

04

Discussion

Picture 7:Melanin dyed wool strip after spectrophotometer test

Errors and Research Against Hypotheses

Production yield:

- No pigment production or fermentation of B1, F1, or F2 pigment
- Human error of Strain

Color Analysis:

- Highest ABS and lowest T% were fungal alternatives

Quantity Yield:

- F1 one of the lowest ratio (.174)

Research Supporting Hypotheses

Bio pigments can dye fabric:

- Change in ABS and T% from plain wool
- All yield outputs produced color
- (Ardila-Leal et al., 2021, Rice, 1974, Kramer & Kostic, 2022, & Shirata et al., 2000)

Significance was determined:

ANOVA, chi-squared, t-test all less then .05

Color Analysis:

- Lawsone= highest ABS and lowest T%
- (Che & Yang, 2022)

Yield Output:

- B1 one of the lowest ratios (.174)
- (Rana et al., 2021).

Future Prospects

- Knowledge of more species

- Mixtures of Biopigments to create new colors

- Bio waste as a source

Conclusion

https://www.pngarts.com/explore/133498

https://www.tiedyeyoursummer.com/ Technique/heart-tie-dye-technique

Thank you for listening!!

Questions?

https://www.pngall.com/colo r-png/download/60480

Citations

- Aman, M. M., Hossein, A., Saeed, M., Hosseini, S. M., & Dufossé Laurent. (2022). Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess and Biosystems Engineering, 45(1), 1-12. https://doi.org/10.1007/s00449-021-02621-8
- Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2021). A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. *Molecules*, 26(13), 3813. https://doi.org/10.3390/molecules26133813
- Bechtold, T., Mussak, R., Mahmud-Ali, A., Ganglberger, E., & Geissler, S. (2005). Extraction of natural dyes for textile dyeing from coloured plant wastes released from the food and Beverage Industry. *Journal of the Science of Food and Agriculture*, 86(2), 233–242. https://doi.org/10.1002/jsfa.2360
- Bonev, B., & Cartwright-Jones, C. (2003). Lawsone. Henna Page. https://www.hennapage.com/henna/encyclopedia/lawsonia/
- Bronze-Uhle, E. S., Piacenti-Silva, M., Paulin, J. V., Battocchio, C., & Graeff, C. F. de O. (2015, August 29). Synthesis of water-soluble melanin. arXiv.org. https://arxiv.org/abs/1508.07457
- Carvalho, C., & Santos, G. (2015). Global Communities, biotechnology and sustainable design natural / bio dyes in textiles. *Procedia Manufacturing*, *3*, 6557–6564. https://doi.org/10.1016/j.promfg.2015.07.956
- Che, J., & Yang, X. (2022, October 11). A recent (2009–2021) perspective on sustainable color and textile coloration using natural plant resources. Heliyon. https://www.sciencedirect.com/science/article/pii/S2405844022022678

Citations

Dolca, C. (2018). TEXTILES COLOURED WITH NATURAL DYES OF VEGETAL ORIGIN.

Scientific Bulletin Series D : Mining, Mineral Processing, Non-Ferrous Metallurgy, Geology and Environmental Engineering, 32(2), 81-89. http://library.keystone.edu:2048/login?url=https://www-proquest-com.keystone.kohacatalog.com:2443/scholarly-journals/textiles-coloured-with-natura l-dyes-vegetal/docview/2186993250/se-2\

Dufossé, L., Padhan, B., Lim, G. B., Martínez, J. M., Mussagy, C. U., Macias-Sánchez, M.,

Macías-Sánchez, M., Pasquet, V., Guillard, C. L., Castro-Puyana, M., Gilbert-López, B., Molino, A., Pinheiro, N., Morcelli, A., Khoo, K. S., Liu, C., Parniakov, O., Bernaerts, T. M., Herrero, M., ... Mohammed, E. (2023, June 8). Microbial pigments: Eco-friendly extraction techniques and some industrial applications. Journal of Molecular Structure. <u>https://www.sciencedirect.com/science/article/abs/pii/S0022286023010517</u>

Gong, J., Wang, F., Ren, Y., Li, Z., Zhang, J., & Li, Q. (2018). Preparation of biomass pigments and dyeing based on bioconversion. *Journal of Cleaner Production*, 182, 301–312. https://doi.org/10.1016/j.jclepro.2018.01.219

Hinsch, E. M., Weber, G., Chen, H.-L., & Robinson, S. C. (2015). Colorfastness of Extracted Wood-staining Fungal Pigments on Fabrics: a new potential for textile dyes. *JTATM: Journal of Textile and Apparel, Technology and Management*, 9(3), 1–11. https://jtatm.textiles.ncsu.edu/index.php/JTATM/article/view/8018/4094

Jha, J., Meenu, K., Sinha, P., & Priyargini. (2017). Microbial Pigment as an Alternative to Synthetic Dyes. IRIS- Journal for Young Scientists, 7, 50–58. https://patnawomenscollege.in/upload/IRIS%20Vol.%20VII/Details/iris-t9.pdf

Kramar, A., & Kostic, M. M. (2022). Bacterial Secondary Metabolites as Biopigments for Textile Dyeing. *Textiles*, 2, 252–264. https://doi.org/https://doi.org/10.3390/textiles2020013

Citations

- Jha, J., Meenu, K., Sinha, P., & Priyargini. (2017). Microbial Pigment as an Alternative to Synthetic Dyes. IRIS- Journal for Young Scientists, 7, 50–58. https://patnawomenscollege.in/upload/IRIS%20Vol.%20VII/Details/iris-t9.pdf
- Kramar, A., & Kostic, M. M. (2022). Bacterial Secondary Metabolites as Biopigments for Textile Dyeing. *Textiles*, 2, 252–264. https://doi.org/https://doi.org/10.3390/textiles2020013
- Lin, L., & Xu, J. (2022). Production of Fungal Pigments: Molecular Processes and their Applications. *Journal of Fungi*, 9(1), 1–25. https://doi.org/10.3390/jof9010044
- MedKoo BioSciences. (2020, February). Lawson Safety Data Sheet. Product Data Sheet. https://www.medkoo.com/uploads/product/Lawsone/product_insert/ProductData-Lawsone.pdf
- Prabhu, K. H., & Bhute, A. S. (2012). Plant based natural dyes and mordants: A Review. Scholars Research Library. <u>https://www.scholarsresearchlibrary.com/articles/plant-based-natural-dyes-and-mordnats-a-</u> review.pdf
- Shirata, A., Tsukamoto, T., Yasui, H., & Hata, H. (2000, April). Isolation of bacteria producing bluish-purple pigment and use ... ResearchGate. https://www.researchgate.net/publication/283814437_Isolation_of_bacteria_producing_bluish-purple_pigment_and_use_for_dyeing
- Sigma-Aldrich. (2024, March 4). p-Benzoquinone Safety Data Sheet. Safety Data Sheet. https://www.sigmaaldrich.com/US/en/life-science/safety
- Rana, B., Bhattacharyya, M., Patni, B., Arya, M., & Joshi, G. K. (2021, February 8). The realm of microbial pigments in the food color market. Frontiers. https://www.frontiersin.org/articles/10.3389/fsufs.2021.603892/full

Rice, M. C. (1974). Let's Try Mushrooms for Color. Thresh Publications.